A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. | LitMetric

AI Article Synopsis

  • Many species distribution models (SDMs) rely on limited presence-absence data, which can lead to biased predictions when projecting to future conditions due to missing environmental factors (spatial niche truncation).
  • The study evaluates how different levels of spatial niche truncation affect SDM performance and tests methods that utilize larger-scale data to mitigate these issues.
  • Results show that while integrating larger-scale data generally reduces bias in predictions, the effectiveness of different methods varies based on the degree of truncation and data combination strategies.

Article Abstract

Many species distribution models (SDMs) are built with precise but geographically restricted presence-absence data sets (e.g., a country) where only a subset of the environmental conditions experienced by a species across its range is considered (i.e., spatial niche truncation). This type of truncation is worrisome because it can lead to incorrect predictions e.g., when projecting to future climatic conditions belonging to the species niche but unavailable in the calibration area. Data from citizen-science programs, species range maps or atlases covering the full species range can be used to capture those parts of the species' niche that are missing regionally. However, these data usually are too coarse or too biased to support regional management. Here, we aim to (1) demonstrate how varying degrees of spatial niche truncation affect SDMs projections when calibrated with climatically truncated regional data sets and (2) test the performance of different methods to harness information from larger-scale data sets presenting different spatial resolutions to solve the spatial niche truncation problem. We used simulations to compare the performance of the different methods, and applied them to a real data set to predict the future distribution of a plant species (Potentilla aurea) in Switzerland. SDMs calibrated with geographically restricted data sets expectedly provided biased predictions when projected outside the calibration area or time period. Approaches integrating information from larger-scale data sets using hierarchical data integration methods usually reduced this bias. However, their performance varied depending on the level of spatial niche truncation and how data were combined. Interestingly, while some methods (e.g., data pooling, downscaling) performed well on both simulated and real data, others (e.g., those based on a Poisson point process) performed better on real data, indicating a dependency of model performance on the simulation process (e.g., shape of simulated response curves). Based on our results, we recommend to use different data integration methods and, whenever possible, to make a choice depending on model performance. In any case, an ensemble modeling approach can be used to account for uncertainty in how niche truncation is accounted for and identify areas where similarities/dissimilarities exist across methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2427DOI Listing

Publication Analysis

Top Keywords

niche truncation
24
spatial niche
20
data sets
20
data
15
data integration
12
integration methods
12
species range
12
real data
12
niche
8
species distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!