Kaempferol, a flavonoid compound, has various biological functions, such as anti‑inflammatory and antitumor activities. Acute liver failure (ALF) is a lethal clinical syndrome that occurs due to severe damage of the liver function. In the present study, the mechanisms underlying the therapeutic effects of kaempferol in ALF were evaluated. An ALF mouse model was established using D‑galactosamine (D‑GalN; 700 mg/kg)/lipopolysaccharide (LPS; 10 µg/kg). A total of 2 h before the administration of D‑GalN/LPS, mice were pretreated with different doses of kaempferol (2.5, 5, 10, 20 and 40 mg/kg), and 6 h after injection of D‑GalN/LPS, mice were euthanized. The survival rate, liver function and levels of inflammatory cytokines were assessed. The results demonstrated that kaempferol pretreatment protected hepatocytes from ALF induced by D‑GalN/LPS via regulation of the autophagy pathway, both and . Pretreatment with a high dose of kaempferol significantly decreased the survival rates and increased severe liver damage; however, pretreatment with a low dose of kaempferol had the opposite effect. Furthermore, pretreatment with a high dose of kaempferol enhanced the levels of proinflammatory cytokines [TNF‑α, IL‑6, IL‑12p40, IL‑1β, C‑X‑C motif chemokine ligand (CXCL)‑2, CXCL‑10] and markers of the MAPK signaling pathway [phosphorylated (p)‑JNK, p‑ERK, p‑p38], whereas pretreatment with a low dose of kaempferol had the opposite effect. Pretreatment with a high dose of kaempferol decreased autophagy, whereas pretreatment with a low dose of kaempferol increased autophagy and . It was also shown that pretreatment with 3‑methyadenine or autophagy related 7 small interfering RNA, to inhibit autophagy, partially abrogated the hepatoprotective effects of pretreatment with 5 mg/kg kaempferol in the ALF mouse model. These results demonstrate that the effects of different doses of kaempferol on D‑GalN/LPS‑induced ALF varies based on the dose, and that kaempferol exerted its effects via regulation of the autophagy pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8335584 | PMC |
http://dx.doi.org/10.3892/mmr.2021.12321 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.
Background/objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Desf. (hemorrhages, urethritis, hepatitis), L.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India. Electronic address:
Kaempferol (KP), a GRAS-certified phytomolecule enrolled in Phase I trials, is reported with various biological effects including anticancer activity. However, its poor pharmacokinetic profile limits the translational utility. Studies indicate that liposomes incorporating cyclodextrin inclusion complexes improves the bioavailability of hydrophobic drugs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India. Electronic address:
A standardized polyphenol-enriched fraction (IPHRFPPEF) was formulated into a phospholipid complex (IPHRFPPEF-PC) to enhance oral bioavailability and evaluate stability, toxicity, and in vivo anti-inflammatory activity in Sprague Dawley rats. IPHRFPPEF was prepared from crude extract using XAD-HP7/Diaion-HP20 resin column chromatography and analyzed via HPLC and NMR. Total phenolic and flavonoid contents were quantified, with IPHRFPPEF showing higher values than the crude fraction.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China. Electronic address:
This study aimed to compare the bioactive compounds presented in quinoa of various colors, and investigated their inhibitory effect on α-glucosidase activity and the in vitro digestibility of starch. The primary bioactive compounds identified in quinoa included betaine and polyphenols (kaempferol, quercetin, rutin, etc.), with their contents increased as the color of quinoa darkened.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China.
Background: Postmenopausal Osteoporosis (PMOP) is characterized by decreased bone mass and deterioration of bone microarchitecture, leading to increased fracture risk. Current treatments often have adverse effects, necessitating safer alternatives. Kaempferol, a flavonoid identified as a key active component of the traditional Chinese medicine Yishen Gushu formula, has shown promise in improving bone health, but its mechanisms in PMOP treatment remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!