Aqueous free bromine species (e.g., HOBr, BrCl, Br2, BrOCl, Br2O, and H2OBr+) can react with activated aromatic compounds via electrophilic aromatic substitution to generate products with industrial applications, environmental consequences, and potentially adverse biological effects. The relative contributions of these brominating agents to overall bromination rates can be calculated via nonlinear regression analyses of kinetic data collected under a variety of solution conditions, including variations in parameters (e.g., [Cl-], [Br-], and pH) known to influence free bromine speciation. Herein, kinetic experiments conducted in batch reactors were employed to evaluate the contributions of steric and electronic effects on bromination of monosubstituted alkylbenzenes (ethyl, isopropyl, tert-butyl) and alkoxybenzenes (ethoxy, isopropoxy, tert-butoxy) and to elucidate the inherent reactivities of aqueous brominating agents towards these aromatic compounds. For bromination at the para position of alkylbenzenes, overall reactivity increased from tert-butyl < ethyl ≈ isopropyl. For bromination at the para position of alkoxybenzenes, reactivity increased from tert-butoxy < ethoxy < isopropoxy. In going from ethyl to tert-butyl and ethoxy to isopropoxy, unfavorable steric effects attenuated the favorable electronic effects imparted by the substituents. When comparing unsubstituted benzene, alkyl-, and alkoxybenzenes, the structure of the substituent has a significant effect on bromination rates, nucleophile regioselectivity, and electrophile chemoselectivity. Hirshfeld charges were useful predictors of reactivity and regioselectivity. The experimental results were also modeled using Taft equations. Collectively, these findings indicate that steric effects, electronic effects, and brominating agents other than HOBr can influence aromatic compound bromination in solutions of free bromine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02422aDOI Listing

Publication Analysis

Top Keywords

free bromine
12
brominating agents
12
electronic effects
12
ethoxy isopropoxy
12
effects bromination
8
aromatic compounds
8
bromination rates
8
bromination para
8
para position
8
reactivity increased
8

Similar Publications

Bromide-promoted cascade annulation of isocyanobiaryls with aldehydes through photoredox catalysis.

Org Biomol Chem

January 2025

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

Herein, we report a cascade annulation of readily available isocyanobiaryls with simple aldehydes photoredox catalysis, providing a straightforward approach towards valuable 6-hydroxyalkylated phenanthridines. Mechanistic studies indicated the generation of a key acyl radical from aldehydes by hydrogen atom abstraction with a bromine radical. This protocol exhibits exceptional chemoselectivity, excellent tolerance of various functional groups and mild reaction conditions.

View Article and Find Full Text PDF

Under mild visible light conditions, formates facilitate C-O cleavage the EDA complex and SCS strategy, yielding α-carbonyl alkyl radicals. These radicals then react with olefins under air conditions, leading to the synthesis of diaryl 1,4-dicarbonyl compounds. Mechanistic studies reveal that α-formyloxy ketone is generated by the reaction between α-brominated acetophenone and formates, followed by the formation of the EDA complex.

View Article and Find Full Text PDF

The present study introduces the idea of a novel fluorescence-based imaging technique combined with a microfluidic platform that enables a precise control of dark transient state populations of fluorescent probes flowing over a uniform, top flat supergaussian excitation field with a constant flow rate. To demonstrate the imaging capability of the proposed detection method, numerical simulations have been performed by considering laser, microscope and flow parameters of experimental setup together with photophysical model and electronic transition rates of fluorescent dyes. As an output data to be assessed, fluorescence image data is simulated numerically for bromine-free carboxyfluorescein and its brominated derivatives having different numbers of bromine atoms.

View Article and Find Full Text PDF

Anode-Free Zinc-Bromine Batteries Enabled by a Simple Prenucleation Strategy.

Small

January 2025

Department of Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.

The design of anode-free zinc (Zn) batteries with high reversibility at high areal capacity has received significant attention recently, which is quietly challenging yet. Here, a Zn alloyed interface through electroplating is introduced, providing homogeneous Zn prenucleation sites to stabilize subsequent Zn nucleation and plating. By employing Zn-Cu alloy as a module, the complementary simulations and characterizations confirm that the prenucleation alloyed interfaces achieve a homogeneous electric field distribution and greatly enhance the stability of the Zn anode.

View Article and Find Full Text PDF

Despite the remarkable advancements in hypervalent iodine chemistry, exploration of bromine and chlorine analogues remains in its infancy due to their difficult synthesis. Herein, we introduce six-membered cyclic λ-bromanes and λ-chloranes. Through single-crystal X-ray structural analyses and conformational studies, we delineate the crucial bonding patterns pivotal for the thermodynamic stability of these compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!