The interest in transition metal dichalcogenides (TMDCs; ME; M = transition metal; E = chalcogenide, y = valence of the metal) has grown exponentially across various science and engineering disciplines due to their unique structural chemistry manifested in a two-dimensional lattice that results in extraordinary electronic and transport properties desired for applications in sensors, energy storage and optoelectronic devices. Since the properties of TMDCs can be tailored by changing the stacking sequence of 2D monolayers with similar or dis-similar materials, a number of synthetic routes essentially based on the disintegration of bulk (, chemical exfoliation) or the integration of atomic constituents (, vapor phase growth) have been explored. Despite a large body of data available on the chemical synthesis of TMDCs, experimental strategies with high repeatability of control over film thickness, phase and compositional purity remain elusive, which calls for innovative synthetic concepts offering, for instance, self-limited growth in the -direction and homogeneous lateral topography. This review summarizes the recent conceptual advancements in the growth of layered van der Waals TMDCs from both mixtures of metal and chalcogen sources (multi-source precursors; MSPs) and from molecular compounds containing metals and chalcogens in one starting material (single-source precursor; SSPs). The critical evaluation of the strengths, limitations and opportunities of MSP and SSP approaches is provided as a guideline for the fabrication of TMDCs from commercial and customized molecular precursors. For example, alternative synthetic pathways using tailored molecular precursors circumvent the challenges of differential nucleation and crystal growth kinetics that are invariably associated with conventional gas phase chemical vapor transport (CVT) and chemical vapor deposition (CVD) of a mixture of components. The aspects of achieving high compositional purity and alternatives to minimize competing reactions or side products are discussed in the context of efficient chemical synthesis of TMDCs. Moreover, a critical analysis of the potential opportunities and existing bottlenecks in the synthesis of TMDCs and their intrinsic properties is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt01397a | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Materials Research and Engineering, Sensor and Flexible Electronics, 2 Fusionopolis Way, 138634, SINGAPORE.
Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!