On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling. We showed that some or all of Cu3+ ions can be reduced to Cu2+ by electron doping, as in the well-known KCuF3. Significant similarities between the electronic structures calculated in the framework of DFT+U suggest that doped CuF3 and Cu2F5 may exhibit high-Tc superconductivity with the same mechanism as in cuprates.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00657fDOI Listing

Publication Analysis

Top Keywords

cuf3 cu2f5
8
cu3+ ions
8
novel copper
4
copper fluoride
4
fluoride analogs
4
analogs cuprates
4
cuprates basis
4
basis first-principles
4
first-principles evolutionary
4
evolutionary crystal
4

Similar Publications

On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!