Purpose: To enhance the image quality of oncology [F]-FDG PET scans acquired in shorter times and reconstructed by faster algorithms using deep neural networks.

Methods: List-mode data from 277 [F]-FDG PET/CT scans, from six centres using GE Discovery PET/CT scanners, were split into ¾-, ½- and ¼-duration scans. Full-duration datasets were reconstructed using the convergent block sequential regularised expectation maximisation (BSREM) algorithm. Short-duration datasets were reconstructed with the faster OSEM algorithm. The 277 examinations were divided into training (n = 237), validation (n = 15) and testing (n = 25) sets. Three deep learning enhancement (DLE) models were trained to map full and partial-duration OSEM images into their target full-duration BSREM images. In addition to standardised uptake value (SUV) evaluations in lesions, liver and lungs, two experienced radiologists scored the quality of testing set images and BSREM in a blinded clinical reading (175 series).

Results: OSEM reconstructions demonstrated up to 22% difference in lesion SUV, for different scan durations, compared to full-duration BSREM. Application of the DLE models reduced this difference significantly for full-, ¾- and ½-duration scans, while simultaneously reducing the noise in the liver. The clinical reading showed that the standard DLE model with full- or ¾-duration scans provided an image quality substantially comparable to full-duration scans with BSREM reconstruction, yet in a shorter reconstruction time.

Conclusion: Deep learning-based image enhancement models may allow a reduction in scan time (or injected activity) by up to 50%, and can decrease reconstruction time to a third, while maintaining image quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803788PMC
http://dx.doi.org/10.1007/s00259-021-05478-xDOI Listing

Publication Analysis

Top Keywords

image quality
12
image enhancement
8
oncology [f]-fdg
8
[f]-fdg pet
8
pet scans
8
deep neural
8
reconstructed faster
8
datasets reconstructed
8
dle models
8
full-duration bsrem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!