Recent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2'O-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2'O-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2'O-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2'O-methylation in tumoral and healthy tissues. We also reveal that rRNA 2'O-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2'O-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2'O-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210124 | PMC |
http://dx.doi.org/10.1093/narcan/zcaa036 | DOI Listing |
Small nucleolar RNAs (snoRNAs) are critical in guiding post-transcriptional modifications like 2'- -methylation (Nm), which play crucial roles in downstream processes such as splicing and translation. This study tests a novel method for Nm validation, addressing a significant gap in modern Nm research, and offers insight into the intricacies of snoRNA-guided Nm. While mapping of Nm modifications has seen significant improvement within the past decade, no major techniques have been able to validate these potential sites.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.
Loss of ribosomal RNA (rRNA) modifications incorporated by the intrinsic methyltransferase TlyA results in reduced sensitivity to tuberactinomycin antibiotics such as capreomycin. However, the mechanism by which rRNA methylation alters drug binding, particularly at the distant but functionally more important site in 23S rRNA Helix 69 (H69), is currently unknown. We determined high-resolution cryo-electron microscopy structures of the 70S ribosome with or without the two ribose 2'-O-methyl modifications incorporated by TlyA.
View Article and Find Full Text PDFEMBO J
December 2024
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
Tissue homeostasis and regeneration involve complex cellular changes. The role of rRNA modification-dependent translational regulation in these processes remains largely unknown. Planarians, renowned for their ability to undergo remarkable tissue regeneration, provide an ideal model for the analysis of differential rRNA regulation in diverse cell types during tissue homeostasis and regeneration.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins.
View Article and Find Full Text PDFRNA Biol
January 2024
CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!