This work presents the microstructure of the cross-section of a newly developed Nb/Inconel 601 weld with particular attention paid to the continuity, morphology of the interface, and the microstructural changes within its vicinity. Both scanning (SEM) and transmission (TEM) electron microscopy techniques are excellent tools to analyze the microstructure that affects both mechanical and corrosion resistance properties of the obtained product. Grain size examination and their orientation together with the character of grain boundaries by the electron backscattered diffraction (EBSD) technique were performed followed by chemical composition determination across the interface with energy-dispersive X-ray spectroscopy (EDS) in SEM. Then, the microstructure observations of the mixed region located at the Nb/Inconel 601 interface using the TEM technique allowed its chemical and phase composition to be revealed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927621012174 | DOI Listing |
Microsc Microanal
July 2021
Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland.
This work presents the microstructure of the cross-section of a newly developed Nb/Inconel 601 weld with particular attention paid to the continuity, morphology of the interface, and the microstructural changes within its vicinity. Both scanning (SEM) and transmission (TEM) electron microscopy techniques are excellent tools to analyze the microstructure that affects both mechanical and corrosion resistance properties of the obtained product. Grain size examination and their orientation together with the character of grain boundaries by the electron backscattered diffraction (EBSD) technique were performed followed by chemical composition determination across the interface with energy-dispersive X-ray spectroscopy (EDS) in SEM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!