A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo. | LitMetric

Serum exosomes from young rats improve the reduced osteogenic differentiation of BMSCs in aged rats with osteoporosis after fatigue loading in vivo.

Stem Cell Res Ther

National Clinical Research Center for Metabolic Diseases, Institute of Metabolism and Endocrinology, Central South University, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.

Published: July 2021

Background: Osteoporosis is a major public health concern for the elderly population and is characterized by fatigue load resulting in bone microdamage. The ability of bone mesenchymal stem cells (BMSCs) to repair bone microdamage diminishes with age, and the accumulation of bone microdamage increases the risk of osteoporotic fracture. There is a lack of effective means to promote the repair of bone microdamage in aged patients with osteoporosis. Exosomes have been shown to be related to the osteogenic differentiation of BMSCs. Here, we aimed to evaluate the changes in the osteogenic differentiation capacity of BMSCs in aged osteoporotic rats after fatigue loading and the treatment potential of serum exosomes from young rats.

Methods: The tibias of six aged osteoporotic rats were subjected to fatigue loading in vivo for 2 weeks, and the bone microdamage, microstructures, and mechanical properties were assessed. Subsequently, BMSCs were extracted to evaluate their proliferation and osteogenic differentiation abilities. In addition, the BMSCs of aged osteoporotic rats after fatigue loading were treated with serum exosomes from young rats under osteogenic induction conditions, and the expression of osteogenic-related miRNAs was quantified. The osteogenetic effects of miRNA-19b-3p in exosomes and the possible target protein PTEN was detected.

Results: Obvious bone microdamage at the fatigue load stress point, the bone microstructure and biomechanical properties were not obviously changed. A decreased osteogenic differentiation ability of BMSCs was observed after fatigue loading, while serum exosomes from young rats highly expressing miRNA-19b-3p improved the decreased osteogenic differentiation ability of BMSCs. Transfection with miRNA-19b-3p mimic could promote osteoblastic differentiation of BMSCs and decreased the expression of PTEN. After transfection of miRNA-19b-3p inhibitor, the promotional effect of exosomes on bone differentiation was weakened. Treatment with transfected exosomes increased the expression of PTEN.

Conclusion: Serum exosomes derived from young rats can improve the decreased osteogenic differentiation ability of BMSCs in aged rats with osteoporosis after fatigue loading and can provide a new treatment strategy for the repair of bone microdamage and prevention of fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8314589PMC
http://dx.doi.org/10.1186/s13287-021-02449-9DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
28
bone microdamage
28
fatigue loading
24
serum exosomes
20
exosomes young
16
young rats
16
bmscs aged
16
differentiation bmscs
12
repair bone
12
aged osteoporotic
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!