We report a case series of children with childhood apraxia of speech, by describing behavioral and white matter microstructural changes following 2 different treatment approaches.Five children with childhood apraxia of speech were assigned to a motor speech treatment (PROMPT) and 5 to a language, nonspeech oral motor treatment. Speech assessment and brain MRI were performed pre- and post-treatment. The ventral (tongue/larynx) and dorsal (lips) corticobulbar tracts were reconstructed in each subject. Mean fractional anisotropy and mean diffusivity were extracted. The hand corticospinal tract was assessed as a control pathway. In both groups speech improvements paralleled changes in the left ventral corticobulbar tract fractional anisotropy. The PROMPT treated group also showed fractional anisotropy increase and mean diffusivity decrease in the left dorsal corticobulbar tract. No changes were detected in the hand tract. Our results may provide preliminary support to the possible neurobiologic effect of a multimodal speech motor treatment in childhood apraxia of speech.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461047 | PMC |
http://dx.doi.org/10.1177/08830738211015800 | DOI Listing |
Clin Linguist Phon
January 2025
Centre for Language and Cognition, Groningen University, Groningen, The Netherlands.
Childhood apraxia of speech (CAS) is a motor speech disorder in which the precision and consistency of speech sounds are impaired due to deficits in motor planning and programming. The literature on CAS suggests that the clinical features of CAS cannot be limited to one level of speech processing and that a more comprehensive understanding of how all levels involved in speech production are part of a complex system is needed. The aim of this study was to investigate the relationship between phonological and speech motor abilities in children with CAS and to determine the extent to which speech motor performance accounts for phonological processing in children with CAS.
View Article and Find Full Text PDFEur J Med Genet
December 2024
Rare Diseases and Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.
O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant neurodevelopmental disorder mainly characterized by global development delay/intellectual disability, white matter abnormalities, and behavioral manifestations. It is caused by pathogenic variants in the KMT2E gene. Here we report seven new patients with loss-of-function KMT2E variants, six harboring frameshift/nonsense changes, and one with a 7q22.
View Article and Find Full Text PDFJ Speech Lang Hear Res
December 2024
Department of Communicative Disorders and Deaf Education, Utah State University, Logan.
Purpose: When using the spatiotemporal index (STI) to measure variability across repetitions of the same stimulus, researchers will typically screen and remove productions that contain errors or disfluencies. However, this screening process is highly subjective, reduces the amount of data available, and may generate samples that are less representative of true speech difficulties. In this study, we quantify the degree to which the STI is skewed by the inclusion of highly deviating productions and whether alternative calculations could better facilitate their inclusion.
View Article and Find Full Text PDFEur J Hum Genet
December 2024
Speech & Language, Murdoch Children's Research Institute, Melbourne, VIC, Australia.
Rare and typically severe motor speech disorders such as childhood apraxia of speech (CAS) and dysarthria affect about 1 in 1000 children. The genetic basis of these speech disorders is well-documented, with approximately 30% of children who undergo genomic testing receiving an explanatory genetic diagnosis. As more children with speech disorders are offered genetic testing, understanding parental views and experiences around genetic testing for their child is critical in providing effective pre- and post-test genetic counselling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!