This study was aimed at exploring the mechanism of promoting humus formation by the addition of exogenous amino acids. Amino acids not only participated in the synthesis of humus directly as precursors, but also changed the functions of bacterial communities. The composition and diversity of bacterial community changed with the addition of amino acids. The ability of bacterial community to degrade lignocellulose was enhanced, which provided precursors for humus synthesis. The key bacteria for humus formation and organic matter transformation were identified using random forests. These bacteria showed growth advantage with the addition of amino acids. The results showed that exogenous amino acids tended to transform organic matter and synthesize humus. Variance partitioning analysis confirmed that the bacterial community was the driving force of humus synthesis. These results were further verified by the structural equation model. These findings provided new ideas and understanding for straw waste composting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125639DOI Listing

Publication Analysis

Top Keywords

amino acids
24
exogenous amino
12
bacterial community
12
humus formation
8
addition amino
8
humus synthesis
8
organic matter
8
humus
7
amino
6
acids
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!