This study examines the potential of hair shaft proteomic analysis to delineate genetic relatedness. Proteomic profiling and amino acid sequence analysis provide information for quantitative and statistically-based analysis of individualization and sample similarity. Protein expression levels are a function of cell-specific transcriptional and translational programs. These programs are greatly influenced by an individual's genetic background, and are therefore influenced by familial relatedness as well as ancestry and genetic disease. Proteomic profiles should therefore be more similar among related individuals than unrelated individuals. Likewise, profiles of genetically variant peptides that contain single amino acid polymorphisms, the result of non-synonymous SNP alleles, should behave similarly. The proteomically-inferred SNP alleles should also provide a basis for calculation of combined paternity and sibship indices. We test these hypotheses using matching proteomic and genetic datasets from a family of two adults and four siblings, one of which has a genetic condition that perturbs hair structure and properties. We demonstrate that related individuals, compared to those who are unrelated, have more similar proteomic profiles, profiles of genetically variant peptides and higher combined paternity indices and combined sibship indices. This study builds on previous analyses of hair shaft protein profiling and genetically variant peptide profiles in different real-world scenarios including different human hair shaft body locations and pigmentation status. It also validates the inclusion of proteomic information with other biomolecular substrates in forensic hair shaft analysis, including mitochondrial and nuclear DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2021.102564DOI Listing

Publication Analysis

Top Keywords

hair shaft
20
genetically variant
12
amino acid
8
proteomic profiles
8
profiles genetically
8
variant peptides
8
snp alleles
8
combined paternity
8
sibship indices
8
hair
6

Similar Publications

Background: Afro-textured hair exhibits distinct physicochemical properties with possible variations in measurable hair parameters. Standardized documentation of trichoscopic norms of afro-textured hair in indigenous Africans is notably lacking.

Methods: A cross-sectional study involving 122 South Africans of both genders of African ancestry (mean age 20.

View Article and Find Full Text PDF

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF
Article Synopsis
  • Trichothiodystrophy (TTD) is a rare genetic disorder that presents with brittle hair, photosensitivity, scaly skin, and stunted growth, leading to a high mortality rate in children mainly due to infections.
  • A case report highlights a five-year-old boy with these symptoms who was diagnosed with TTD after genetic testing during treatment for a dental infection.
  • The report emphasizes the need for comprehensive evaluation of pediatric patients to improve diagnosis and care for genetic disorders like TTD, involving a collaborative approach among healthcare providers.
View Article and Find Full Text PDF

Pili trianguli et canaliculi syndrome is a rare hair shaft disorder characterized by frizzy hair that cannot be smoothed flat. Affected hair shafts are triangular or kidney-shaped with longitudinal grooving. Diagnosis typically requires electron microscopy, which may be cost-prohibitive, or alternatively, the distinctive features of hair shafts can be identified through histological examination of cross sections, that is time-consuming.

View Article and Find Full Text PDF

Proteomic Analysis of Single Hairs.

Methods Mol Biol

December 2024

University of California - Davis, Department of Environmental Toxicology, Davis, CA, USA.

Hair is a ubiquitous and robust mammalian tissue with biological, clinical, forensic, social, and economic significance. The hair shaft proteome reflects both structural proteins, dominated by cuticular intermediate filament keratins and associated proteins, and proteins involved in the final cellular processes of terminally differentiating corneocytes prior to cornification. These distinct biological processes involve cell maintenance, biosynthesis, senescence, and xenobiotic response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!