Background: Coronary artery disease (CAD) is the leading cause of death in the United States (US) and a major contributor to healthcare cost. Accurate segmentation of coronary arteries and detection of stenosis from invasive coronary angiography (ICA) are crucial in clinical decision making.
Purpose: We aim to develop an automatic method to extract coronary arteries by deep learning and detect arterial stenosis from ICAs.
Methods: In this study, a deep learning model which integrates a feature pyramid with a U-Net++ model was developed to automatically segment coronary arteries in ICAs. A compound loss function which contains Dice loss, dilated Dice loss, and L2 regularization was utilized to train the proposed segmentation model. Following the segmentation, an algorithm which extracts vascular centerlines, calculates the diameters, and measures the stenotic levels, was developed to detect arterial stenosis.
Results And Conclusions: In the dataset consisting of 314 ICAs obtained from 99 patients, the segmentation model achieved an average Dice score of 0.8899, a sensitivity of 0.8595, and a specificity of 0.9960. In addition, the stenosis detection algorithm achieved a true positive rate of 0.6840 and a positive predictive value of 0.6998 on all types of stenosis, which has great promise to advance to clinical uses and could provide auxiliary suggestions for CAD diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.104667 | DOI Listing |
J Biophotonics
January 2025
Department of Electrical Engineering, Columbia University, New York, New York, USA.
Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Third People's Hospital of Longgang District of Shenzhen, Shenzhen, Guangdong 518020, China.
Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.
Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.
Sci Rep
January 2025
Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland.
Diffuse coronary artery disease (CAD) impacts the immediate hemodynamic and clinical outcomes of percutaneous coronary intervention (PCI). We evaluated whether the diffuse pattern of CAD derived from angiographic Quantitative flow ratio (QFR) impacts the immediate hemodynamic outcome post-PCI and the medium term predicted vessel-oriented composite endpoint (VOCE). Paired pre-procedure QFRs were assessed in 503 patients and 1022 vessels in the Multivessel TALENT (MVT) trial.
View Article and Find Full Text PDFCoron Artery Dis
January 2025
Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases.
JVS Vasc Insights
May 2024
Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University.
Objective: Atherosclerosis underlies the most common etiologies of mortality worldwide, resulting in nearly 10 million deaths annually. In atherosclerosis, inflammation, metabolic factors, and hemodynamics cause the accumulation of extracellular lipids and the formation of plaques in the tunica intima of specific arteries. Atherosclerotic plaques primarily form in the coronary and carotid arteries, the aorta, and the peripheral arteries of the lower extremities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!