Treatment of copper converter slag with deep eutectic solvent as green chemical.

Waste Manag

Bilecik ŞeyhEdebali University, Department of Metallurgical and Material Engineering, Bilecik, Turkey.

Published: August 2021

Industrial copper slag is among the most important wastes to be evaluated in terms of containing valuable metals and the amount of waste approaching 30 million tons per year. Therefore, in this study, it was aimed to propose a feasible route for copper and zinc recovery from copper converter slag (CCS) by using choline chloride (ChCl) based deep eutectic solvent which is applied on this type of slag for the first time. During the leaching experiments with the pure ChCl-2urea mixture, temperature (25-95 °C), leaching duration (2-72 h), and pulp density (1/10-1/40 g/mL) were selected as the parameters to be investigated for Cu and Zn extraction. After the experimental results, the optimized conditions for the ChCl-2urea leaching process, which gave 89.9% Cu and 65.3% Zn extraction was found at 48 h, 95 °C, 1/20 g/mL pulp density with 600 rpm stirring speed. It is noted that the iron dissolution ratio is very low (max. 4.7%) under the selected conditions. At the end of the iron cementation stage, the total recovery efficiency as a pure metallic copper was 63%. The calculated activation energy for the dissolution of the copper and zinc from CCS is 8.86 kJ mol and 14.48 kJ mol, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2021.07.022DOI Listing

Publication Analysis

Top Keywords

copper converter
8
converter slag
8
deep eutectic
8
eutectic solvent
8
copper zinc
8
pulp density
8
copper
5
treatment copper
4
slag
4
slag deep
4

Similar Publications

Zero-Valent Copper Catalysis Enables Regio- and Stereoselective Difunctionalization of Alkynes.

Angew Chem Int Ed Engl

January 2025

Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.

The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.

View Article and Find Full Text PDF

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.

The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.

View Article and Find Full Text PDF

Brochantite was precipitated using stoichiometric amounts of CuSO and NaOH and characterized by scanning electron microscopy, specific surface area, thermogravimetric analysis, and zeta potential. Brochantite can be converted into paratacamite, basic copper bromide, and copper phthalate by shaking the powder with solutions containing excess corresponding anions. By contrast, attempts to convert brochantite into basic iodide, acetate, nitrate, or rhodanide in a similar way failed, that is, the powder after shaking with solutions containing excess corresponding anions still showed the powder X-ray diffraction pattern of brochantite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!