Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As for electronic computation, neural information processing is energetically expensive. This is because information is coded in the brain as membrane voltage changes, which are generated largely by passive ion movements down electrochemical gradients, and these ion movements later need to be reversed by active ATP-dependent ion pumping. This article will review how much of the energetic cost of the brain reflects the activity of glutamatergic synapses, consider the relative amount of energy used pre- and postsynaptically, outline how evolution has energetically optimised synapse function by adjusting the presynaptic release probability and the postsynaptic number of glutamate receptors, and speculate on how energy use by synapses may be sensed and adjusted. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2021.108727 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!