Although Halobacterium salinarum provided the first example of N-glycosylation outside the Eukarya, much regarding such post-translational modification in this halophilic archaea remains either unclear or unknown. The composition of an N-linked glycan decorating both the S-layer glycoprotein and archaellins offers one such example. Originally described some 40 years ago, reports from that time on have presented conflicted findings regarding the composition of this glycan, as well as differences between the protein-bound glycan and that version of the glycan attached to the lipid upon which it is assembled. To clarify these points, liquid chromatography-electrospray ionization mass spectrometry was employed here to revisit the composition of this glycan both when attached to selected asparagine residues of target proteins and when bound to the lipid dolichol phosphate upon which the glycan is assembled. Such efforts revealed the N-linked glycan as corresponding to a tetrasaccharide comprising a hexose, a sulfated hexuronic acid, a hexuronic acid and a second sulfated hexuronic acid. When attached to dolichol phosphate but not to proteins, the same tetrasaccharide is methylated on the final sugar. Moreover, in the absence of the oligosaccharyltransferase AglB, there is an accumulation of the dolichol phosphate-linked methylated and disulfated tetrasaccharide. Knowing the composition of this glycan at both the lipid- and protein-bound stages, together with the availability of gene deletion approaches for manipulating Hbt. salinarum, will allow delineation of the N-glycosylation pathway in this organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796120 | PMC |
http://dx.doi.org/10.1093/glycob/cwab080 | DOI Listing |
J Agric Food Chem
January 2025
Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany.
Some lactic acid bacteria such as or contain genes encoding 4,6-α-glucanotransferases. These enzymes convert starch and maltodextrins into isomalto/malto-polysaccharides (IMMPs). Many studies focused on the properties of recombinant glucanotransferases, but limited knowledge is available on fermentative synthesis.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Food Engineering Department, Engineering Faculty Necmettin Erbakan University Konya Türkiye.
Alternative flours can reveal beneficial health effects. The aim of this study was to evaluate and compare the effects of dietary fibers (DFs) of coconut and carob flours on colonic microbiota compositions and function. Coconut flour DFs were found to be dominated by mannose-containing polysaccharides by gas chromatography (GC)/MS and spectrophotometer, whereas glucose and uronic acid were the main monosaccharide moieties in carob flour DFs.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!