Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study is to assess the influences of climate, socio-economic determinants, and spatial distance on the confirmed cases and deaths in the raise phase of COVID-19 in China. The positive confirmed cases and deaths of COVID-19 over the population size of 100,000 over every 5 consecutive days (the CCOPSPTT and DOPSPTT for short, respectively) covered from 25th January to 29th February, 2020 in five city types (i.e., small-, medium-, large-, very large- and super large-sized cities), along with the data of climate, socio-economic determinants, spatial distance of the target city to Wuhan city (DW, for short), and spatial distance between the target city and their local province capital city (DLPC, for short) were collected from the official websites of China. Then the above-mentioned influencing factors on CCOPSPTT and DOPSPTT were analyzed separately in Hubei and other provinces. The results showed that CCOPSPTT and DOPSPTT were significantly different among five city types outside Hubei province (p < 0.05), but not obviously different in Hubei province (p > 0.05). The CCOPSPTT had significant correlation with socio-economic determinants (GDP and population), DW, climate and time after the outbreak of COVID-19 outside Hubei province (p < 0.05), while was only significantly related with GDP in Hubei province (p < 0.05). The DOPSPTT showed significant correlation with socio-economic determinants, DW, time and CCOPSPTT outside Hubei province (p < 0.05), while was significantly correlated with GDP and CCOPSPTT in Hubei province (p < 0.05). Compared with other factors, socio-economic determinants have the largest relative contribution to variance of CCOPSPTT in all studied cities (> 78%). The difference of DOPSPTT among cities was mainly affected by CCOPSPTT. Our results showed that influences of city types on the confirmed cases and death differed between Hubei and other provinces. Socio-economic determinants, especially GDP, have higher impact on the change of COVID-19 transmission compared with other factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315531 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255229 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!