iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces.

J Chem Theory Comput

Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China.

Published: August 2021

It is shown that in the spirit of "from fragments to molecule" for localizing molecular orbitals [ 3643], a prechosen set of occupied/virtual valence/core atomic/fragmental orbitals can be transformed to an equivalent set of localized occupied/virtual pre-localized molecular orbitals (pre-LMO), which can then be taken as probes to select the same number of maximally matching localized occupied/virtual Hartree-Fock (HF) or restricted open-shell HF (ROHF) molecular orbitals as the initial local orbitals spanning the desired complete active space (CAS). In each cycle of the self-consistent field (SCF) calculation, the CASSCF orbitals can be localized by means of the noniterative "top-down least-change" algorithm for localizing ROHF orbitals [ 104104] such that the maximum matching between the orbitals of two adjacent iterations can readily be monitored, leading finally to converged localized CASSCF orbitals that overlap most the guess orbitals. Such an approach is to be dubbed as "imposed CASSCF" (iCASSCF or simply iCAS in short) for good reasons: (1) it has been assumed that only those electronic states that have largest projections onto the active space defined by the prechosen atomic/fragmental orbitals are to be targeted. This is certainly an imposed constraint but has wide applications in organic and transition metal chemistry where valence (or core) atomic/fragmental orbitals can readily be identified. (2) The selection of both initial and optimized local active orbitals is imposed from the very beginning by the pre-LMOs (which span the same space as the prechosen atomic/fragmental orbitals). Apart from the (imposed) automation and localization, iCAS has two additional merits: (a) the guess orbitals are guaranteed to be the same for all geometries, for the pre-LMOs do not change in character with geometry and (b) the use of localized orbitals facilitates the SCF convergence, particularly for large active spaces. Both organic molecules and transition-metal complexes are taken as showcases to reveal the efficacy of iCAS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c00456DOI Listing

Publication Analysis

Top Keywords

orbitals
16
atomic/fragmental orbitals
16
molecular orbitals
12
complete active
8
active spaces
8
localized occupied/virtual
8
active space
8
casscf orbitals
8
guess orbitals
8
prechosen atomic/fragmental
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!