Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of TiCT MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.1c01968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!