Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles.

J Am Chem Soc

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

Published: August 2021

Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods, employs stable and easily prepared organosilanes, and achieves selective arylation in the presence of acidic functional groups. The utility of this method is demonstrated by the synthesis of pharmaceutical analogues and its use in multicomponent reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510683PMC
http://dx.doi.org/10.1021/jacs.1c05764DOI Listing

Publication Analysis

Top Keywords

lewis basic
8
basic salt-promoted
4
salt-promoted organosilane
4
organosilane coupling
4
coupling reactions
4
reactions aromatic
4
aromatic electrophiles
4
electrophiles lewis
4
basic salts
4
salts promote
4

Similar Publications

Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.

View Article and Find Full Text PDF

Inflammation in atherosclerosis: a Big Idea that has underperformed so far.

Curr Opin Lipidol

January 2025

Department of Cardiovascular Sciences and Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.

Purpose Of Review: For many years, inflammation has been a major concept in basic research on atherosclerosis and in the development of potential diagnostic tools and treatments. The purpose of this review is to assess the performance of this concept with an emphasis on recent clinical trials. In addition, contemporary literature may help identify new therapeutic targets, particularly in the context of the treatment of early, rather than end-stage, arterial disease.

View Article and Find Full Text PDF

Multifunctional Polar Polymer Boosting PEO Electrolytes toward High Room Temperature Ionic Conductivity, High-Voltage Stability, and Excellent Elongation.

ACS Appl Mater Interfaces

January 2025

International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.

Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.

View Article and Find Full Text PDF

C16 peptide and angiopoietin-1 alleviate the side effects of glucocorticoids in a rat multiple sclerosis model.

Life Sci

January 2025

Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China. Electronic address:

Background: Natural glucocorticoids (GCs) have been widely used to treat acute multiple sclerosis (MS) attacks. However, they also cause significant side effects related to immunosuppression. Our previous study found that C16 peptide combined with angiopoietin-1 (Ang-1) inhibited inflammatory cell infiltration and protected blood vessels in animal models of inflammatory neurodegenerative diseases.

View Article and Find Full Text PDF

The carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!