Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3503DOI Listing

Publication Analysis

Top Keywords

taxonomic diversity
28
functional diversity
20
functional taxonomic
12
diversity
12
diversity metrics
12
functional
10
taxonomic
9
disturbance gradients
8
considering functional
8
diversity responses
8

Similar Publications

To understand the distribution pattern and influencing factors of plant community and diversity along the altitude gradient, we examined plant community types, plant diversity and phylogenetic diversity of mountain steppe in Luoshan, Ningxia, and analyzed the relationship between the plant community and its diversity and environmental driving factors. The results showed that the main community types in the mountain steppe were community, community, community, community, + community, community, ++ community, + community, + community, community, community and community. The distribution of mountain steppe community was mainly affected by altitude, soil alkali-hydrolyzed nitrogen, water content, available potassium, silt and organic matter contents, with altitude and soil water content having the greatest effects (<0.

View Article and Find Full Text PDF

Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.

View Article and Find Full Text PDF

Revised taxonomic classification of the genomes, providing new insights into the genus .

Front Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Background: strains are important opportunistic pathogens with great potential applications in industry and agriculture. Their significant genetic and phenotypic diversity has led to several changes in their taxonomic localization and was prone to inaccurate species classification based on traditional identification methods.

Methods: All 2,615 genomes of the genus were obtained from the NCBI genome database.

View Article and Find Full Text PDF

Well-preserved specimens of a new species of arthrodiran placoderm, sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus .

View Article and Find Full Text PDF

Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!