We present a detailed method for extraction of high-molecular weight genomic DNA suitable for numerous DNA sequencing applications, and a straightforward in silico approach for reconstructing novel mitochondrial (mt) genomes directly from total genomic DNA extracts derived from next-generation sequencing (NGS) data sets. The in silico post-sequencing pipeline described is fast, accurate, and highly efficient, with modest memory requirements that can be performed using a standard desktop computer. The approach is particularly effective for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information currently available and overcomes many of the limitations of traditional strategies. The described methodologies are also applicable for metagenomics sequencing from mixed or pooled samples containing multiple species and subsequent specific assembly of specific mitochondrial genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1681-9_3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!