Background: A variety of modifiable and nonmodifiable factors such as ethnicity, age, and diet have been shown to influence bone health. Previous studies are usually limited to analyses focused on the association of a few a priori variables or on a specific subset of the population.
Objective: Dietary, physiological, and lifestyle data were used to identify directly modifiable and nonmodifiable variables predictive of bone mineral content (BMC) and bone mineral density (BMD) in healthy US men and women using machine-learning models.
Methods: Ridge, lasso, elastic net, and random forest models were used to predict whole-body, femoral neck, and spine BMC and BMD in healthy US men and women ages 18-66 y, with a BMI (kg/m2) of 18-44 (n = 313), using nonmodifiable anthropometric, physiological, and demographic variables; directly modifiable lifestyle (physical activity, tobacco use) and dietary (via FFQ) variables; and variables approximating directly modifiable behavior (circulating 25-hydroxycholecalciferol and stool pH).
Results: Machine-learning models using nonmodifiable variables explained more variation in BMC and BMD (highest R2 = 0.75) compared with when using only directly modifiable variables (highest R2 = 0.11). Machine-learning models had better performance compared with multivariate linear regression, which had lower predictive value (highest R2 = 0.06) when using directly modifiable variables only. BMI, body fat percentage, height, and menstruation history were predictors of BMC and BMD. For directly modifiable features, betaine, cholesterol, hydroxyproline, menaquinone-4, dihydrophylloquinone, eggs, cheese, cured meat, refined grains, fruit juice, and alcohol consumption were predictors of BMC and BMD. Low stool pH, a proxy for fermentable fiber intake, was also predictive of higher BMC and BMD.
Conclusions: Modifiable factors, such as diet, explained less variation in the data compared with nonmodifiable factors, such as age, sex, and ethnicity, in healthy US men and women. Low stool pH predicted higher BMC and BMD. This trial was registered at www.clinicaltrials.gov as NCT02367287.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jn/nxab266 | DOI Listing |
Adv Biotechnol (Singap)
June 2024
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France. Electronic address:
Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC.
View Article and Find Full Text PDFJ Am Acad Orthop Surg
January 2025
From the Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, USA (Sutton, Lizcano, Krueger, Courtney, and Purtill), and the Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, USA (Austin).
Introduction: Clinical outcome measures used under value-based reimbursement models require risk stratification of patient demographics and medical history. Only certain perioperative patient factors may be influenced by the surgeon. The study evaluated surgeon-influenced modifiable factors associated with achieving literature-defined KOOS score thresholds to serve as the foundation of the newly established alternative payment models for total knee arthroplasties (TKA).
View Article and Find Full Text PDFSTAR Protoc
January 2025
School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China. Electronic address:
The detailed chromatin assembly processes for many epigenetic regulatory complexes are largely unknown. Here, we present a protocol utilizing heterochromatin-targeting module (HTM) module-mediated chromatin tethering followed by microscopy-based visualization to detect the recruitment priority between two components in Polycomb repressive complex 1 (PRC1). Moreover, we detail procedures for detecting the resultant histone-modifying activities of PRC1 using immunofluorescence (IF) analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!