Network pharmacology and molecular docking analysis on mechanisms of Tibetan Hongjingtian () in the treatment of COVID-19.

J Med Microbiol

Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, PR China.

Published: July 2021

Coronavirus disease 2019 (COVID-19) is a highly contagious disease and ravages the world. We proposed that might have potential value in the treatment of COVID-19 patients by regulating the immune response and inhibiting cytokine storm. We aimed to explore the potential molecular mechanism for () against the immune regulation of COVID-19, and to provide a referenced candidate Tibetan herb () to overcome COVID-19. Components and targets of were retrieved from the TCMSP database. GO analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were built by R bioconductor package to explore the potential biological effects for targets of . The -compound-target network, target pathway network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.3.0. Autodock 4.2 and Discovery Studio software were applied for molecular docking. Four bioactive components (quercetin, kaempferol, kaempferol-3-O-α-l-rhamnoside and tamarixetin) and 159 potential targets of were identified from the TCMSP database. The result of GO annotation and KEGG-pathway-enrichment analyses showed that target genes of were associated with inflammatory response and immune-related signalling pathways, especially IL-17 signalling pathway, and TNF signalling pathway. Targets-pathway network and PPI network showed that IL-6, IL-1B and TNF-α were considered to be hub genes. Molecular docking showed that core compound (quercetin) had a certain affinity with IL-1β, IL-6 and TNF-α. might play an anti-inflammatory and immunoregulatory role in the cytokine storm of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493420PMC
http://dx.doi.org/10.1099/jmm.0.001374DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
treatment covid-19
8
cytokine storm
8
explore potential
8
tcmsp database
8
ppi network
8
signalling pathway
8
network
6
covid-19
6
network pharmacology
4

Similar Publications

This study identified the amino acid sequences of peptides generated from the enzymatic hydrolysis of goat milk proteins from two different sources and annotated their functional activities. Peptidomics and molecular docking approaches were used to investigate the antioxidant and ACE inhibitory properties of the unique peptides, revealing the molecular mechanisms underlying their bioactivity. In vitro experiments showed that the IC50 values for ACE inhibition of the four peptides (LSMTDTR, QEALELIR, NIPVGILR, and QAQNVQHY) were 2.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Concoctive principles of detoxification and retention of the main toxic hepatotoxicity of Tripterygium wilfordii and its anti-inflammatory efficacy by concocting with the medicinal excipient Spatholobi Caulis juice.

Fitoterapia

January 2025

College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Medicine, Zhengzhou 450046, China. Electronic address:

Tripterygium wilfordii (TW), which has severe hepatotoxicity, is commonly used as anti-rheumatism. Using the juice of auxiliary herbs in concocting poisonous herbs is a conventional method for toxicity reduction or efficacy enhancement. Traditional Chinese Pharmacy textbooks record that Spatholobi Caulis (SC) can alleviate the side effects caused by TW and also possesses excellent hepatoprotective effect.

View Article and Find Full Text PDF

Beta-sitosterol regulates PTGS1 to inhibit gastric cancer cell proliferation and angiogenesis.

Prostaglandins Other Lipid Mediat

January 2025

Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China. Electronic address:

Background: Gastric cancer (GC) is the third leading culprit of cancer-related deaths around the world. Beta-sitosterol (BS) is an important phytosterol that has been proven to have anti-proliferative effects on GC and other tumors. However, mechanisms and targets of BS in cancer are rarely explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!