The global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in widespread social and economic disruption. Effective interventions are urgently needed for the prevention and treatment of COVID-19. Neutralizing monoclonal antibodies (mAbs) have demonstrated their prophylactic and therapeutic efficacy against SARS-CoV-2, and several have been granted authorization for emergency use. Here, we discover and characterize a fully human cross-reactive mAb, MW06, which binds to both SARS-CoV-2 and SARS-CoV spike receptor-binding domain (RBD) and disrupts their interaction with angiotensin-converting enzyme 2 (ACE2) receptors. Potential neutralization activity of MW06 was observed against both SARS-CoV-2 and SARS-CoV in different assays. The complex structure determination and epitope alignment of SARS-CoV-2 RBD/MW06 revealed that the epitope recognized by MW06 is highly conserved among SARS-related coronavirus strains, indicating the potential broad neutralization activity of MW06. In assays, no antibody-dependent enhancement (ADE) of SARS-CoV-2 infection was observed for MW06. In addition, MW06 recognizes a different epitope from MW05, which shows high neutralization activity and has been in a Phase 2 clinical trial, supporting the development of the cocktail of MW05 and MW06 to prevent against future escaping variants. MW06 alone and the cocktail show good effects in preventing escape mutations, including a series of variants of concern, B.1.1.7, P.1, B.1.351, and B.1.617.1. These findings suggest that MW06 recognizes a conserved epitope on SARS-CoV-2, which provides insights for the development of a universal antibody-based therapy against SARS-related coronavirus and emerging variant strains, and may be an effective anti-SARS-CoV-2 agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317929PMC
http://dx.doi.org/10.1080/19420862.2021.1953683DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 sars-cov
12
neutralization activity
12
mw06
9
sars-cov-2
8
activity mw06
8
sars-related coronavirus
8
mw06 recognizes
8
characterization mw06
4
mw06 human
4
human monoclonal
4

Similar Publications

Severity and Long-Term Mortality of COVID-19, Influenza, and Respiratory Syncytial Virus.

JAMA Intern Med

January 2025

Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.

Importance: SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) contribute to many hospitalizations and deaths each year. Understanding relative disease severity can help to inform vaccination guidance.

Objective: To compare disease severity of COVID-19, influenza, and RSV among US veterans.

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Viremia defined as detectable SARS-CoV-2 RNA in the blood is a potential marker of disease severity and prognosis in COVID-19 patients. Here, we determined the frequency of viremia in serum of two independent COVID-19 patient cohorts within the German National Pandemic Cohort Network (German: tionales andemie horten etzwerk, NAPKON) with diagnostic RT-PCR against SARS-CoV-2. A cross-sectional cohort with 1,122 COVID-19 patients (German: , SUEP) and 299 patients recruited in a high-resolution platform with patients at high risk to develop severe courses (German: , HAP) were tested for viremia.

View Article and Find Full Text PDF

Low Neutralization of SARS-CoV-2 Omicron BA5248, XBB15 and JN1 by Homologous Booster and Breakthrough Infection.

J Med Virol

February 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, P. R. China.

Immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be induced through either infection with the virus or vaccination, providing protection against reinfection or reducing the risk of severe clinical outcomes. In this study, we recruited 172 volunteers who received different vaccination regimens, including 124 individuals who had recovered from breakthrough infections caused by the Omicron variant (27 with 2 doses, 49 with 3 doses, and 48 with 4 doses) and 48 healthy donors who did not experience breakthrough infections (all of whom received a fourth dose during the infection wave). We measured neutralizing antibody levels against Omicron BA.

View Article and Find Full Text PDF

Safety and immunogenicity of Ad26.COV2.S in adolescents: Phase 2 randomized clinical trial.

Hum Vaccin Immunother

December 2025

Crucell Integration, Janssen Research and Development, Beerse, Belgium.

We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!