Effects of fruit tree canopy shading on grain filling of intercropping winter wheat.

Ying Yong Sheng Tai Xue Bao

Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China.

Published: July 2021

Fruit tree-wheat intercropping system is the main agricultural production pattern in sou-thern Xinjiang. In this study, almond ()-winter wheat (Xindong 20 (, var. Xindong 20) intercropping system was used as the research object. Four tree forms of delayed open-central shape (DC), open-center shape (OC), high stem-shape (HS), and semicircle small-canopy shape (SC) and three intercropping distances (wheat intercropping area respectively 1.5, 2.5 and 3.5 m from the tree trunk) were set to create tree canopy shading treatments, with monoculture wheat as the control. The environmental factors and the grain filling characteristic of winter wheat under different treatment conditions were measured, and the correlation between grain filling characteristics and 1000-grain weight and environmental factors was established to provide information for selecting the best management standards and optimizing the intercropping system. The results showed that under the almond tree-winter wheat intercropping system, the PAR, red/far-red light (R/FR), and temperature above the wheat canopy were significantly decreased due to canopy shading, resulting in a significant increase in humidity. The degree of variation was affected by tree form and distance. The PAR decrease degree of the four treatments was DC>OC/HS>SC, except for HS. The PAR decrease of the other tree form treatments was 1.5 m>2.5 m>3.5 m. The PAR decrease was distributed in the range of 35.5%-86.6%. A cubic polynomial equation represented the grain filling process, and the specific property of grain filling and 1000-grain weight was assessed using the correlation analysis. The decrease in the 1000-grain weight in the intercropping system was closely associated with the decreases in average grain-filling rate (), maximum grain-filling rate (), effective grain-filling duration (), and effective grain-filling duration (). The shortening of and the reduction in the grain filling rate were related with the reduction in the PAR incidence above the wheat canopy. In the fruit tree-winter wheat intercropping system, the reduction of PAR, dry matter accumulation after flowering, and were reduced by tree canopy shading consequently for the decrease in the 1000-grain weight of the intercropping wheat. When the distance between the intercropping area and the tree trunk was greater than 75% of tree height, and shading intensity was less than 35.5% of the natural light intensity, the intercropping with the almond tree could increase the 1000-grain weight of wheat by increasing the effective grain-filling duration.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202107.028DOI Listing

Publication Analysis

Top Keywords

grain filling
24
intercropping system
24
1000-grain weight
20
canopy shading
16
tree canopy
12
intercropping
12
wheat intercropping
12
par decrease
12
effective grain-filling
12
grain-filling duration
12

Similar Publications

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

A molecular module improves rice grain quality and yield at high temperatures.

Natl Sci Rev

February 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.

Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice.

View Article and Find Full Text PDF

Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.

View Article and Find Full Text PDF

Stay-green sorghum varieties are known for their drought resistance and ability to retain green biomass during grain filling, making them crucial for sustainable agriculture in arid regions. However, there is limited information on their stover yield (SY) and nutritional quality when both grain and forage are harvested. This study assessed five stay-green sorghum varieties at the Bako Agricultural Research Centre using a randomized complete block design with three replications in 2020, 2021, and 2022.

View Article and Find Full Text PDF

Molecular Mechanisms of Grain Chalkiness Variation in Rice Panicles.

Plants (Basel)

January 2025

Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.

Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!