AI Article Synopsis

Article Abstract

YTH domain containing 2 (YTHDC2) is the largest N6-Methyladenosine (m A) binding protein of the YTH protein family and the only member containing ATP-dependent RNA helicase activity. For further analysing its biological role in epigenetic modification, we comprehensively explored YTHDC2 from gene expression, genetic alteration, protein-protein interaction (PPI) network, immune infiltration, diagnostic value and prognostic value in pan-cancer, using a series of databases and bioinformatic tools. We found that YTHDC2 with Missense mutation could cause a different prognosis in uterine corpus endometrial carcinoma (UCEC), and its different methylation level could lead to a totally various prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC) and UCEC. The main molecular mechanisms of YTHDC2 focused on catalytic activity, helicase activity, snRNA binding, spliceosome and mRNA surveillance. Additionally, YTHDC2 was notably correlated with tumour immune infiltration. Moreover, YTHDC2 had a high diagnostic value for seven cancer types and a prognostic value for brain lower grade glioma (LGG), rectum adenocarcinoma (READ) and skin cutaneous melanoma (SKCM). Collectively, YTHDC2 plays a significant role in epigenetic modification and immune infiltration and maybe a potential biomarker for diagnosis and prognosis in certain cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435423PMC
http://dx.doi.org/10.1111/jcmm.16818DOI Listing

Publication Analysis

Top Keywords

immune infiltration
16
epigenetic modification
12
yth domain
8
modification immune
8
helicase activity
8
role epigenetic
8
squamous cell
8
cell carcinoma
8
ythdc2
7
role yth
4

Similar Publications

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Characterizing tumor-infiltrating group 1 innate lymphoid cells in PyMT breast tumors.

Methods Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, AB, Canada. Electronic address:

Breast cancer is the most common cancer in women and continues to have a significant impact in cancer-associated deaths worldwide. Investigating the complex roles of infiltrating immune subsets within the tumor microenvironment (TME) will enable a better understanding of disease progression and reveal novel therapeutic strategies for patients with breast cancer. The mammary-specific expression of polyomavirus middle T oncoprotein (MMTV-PyMT) was first established in 1992 by William Muller and is the most commonly used genetically engineered mouse model (GEMM) for breast cancer research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!