Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Foam-gels are one of the most important multicomponent-model systems in aerated confectionery, and an investigation of their microstructure is desirable. In this research, the structure-function relationship of xanthan gum/guar gum (XG/GG) and licorice (Glycyrrhiza glabra) root extract powder (LEP) was investigated in a high-sugar medium. Foam-gel systems were prepared at 4:10% to 8:20% ratios of LEP to biopolymer.
Results: The results show that increasing the LEP content reduced both the melting point and enthalpy, probably due to higher overrun and weaker junctions. Boosting the XG/GG ratio led the enhancement of mechanical properties, whereas increasing the LEP concentration weakened all textural parameters, which could be due to the poor structure of the network in the presence of the foaming agent, increased moisture content and overrun. In the whipped mixture samples containing 10 g kg XG/GG, higher foaming capacity was observed. By increasing the level of biopolymers, smaller and more uniform air cells were formed according to a scanning electron microscopical study. At higher concentration of LEP, smaller bubbles and increased porosity were seen, which could be attributed to the availability of surfactant in the interfacial layer.
Conclusion: Maximum structural strength was achieved at a 4:20 ratio of LEP to XG/GG. In rheological experiments, pseudoplastic behavior was seen in all samples. Generally, this model system can be simulated for other herbal extracts containing natural surfactants such as saponins. Achieving a more detailed understanding of these structures and their interactions could help in formulating novel food products. © 2021 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.11441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!