The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-A ) by solution NMR. Six of eight peptides are specifically bound to VAP-A. Furthermore, we found that the RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 has an FFAT-like motif which specifically binds to VAP-A as well as other FFAT-like motifs. Our results will contribute to the discovery of new VAP interactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.14166 | DOI Listing |
Mol Cell Biol
September 2024
Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA.
LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum.
View Article and Find Full Text PDFCell Rep
August 2024
Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. Electronic address:
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are highly conserved endoplasmic reticulum (ER)-resident proteins that establish ER contacts with multiple membrane compartments in many eukaryotes. However, VAP-mediated membrane-tethering mechanisms remain ambiguous. Here, focusing on fission yeast ER-plasma membrane (PM) contact formation, using systematic interactome analyses and quantitative microscopy, we predict a non-VAP-protein direct binding-based ER-PM coupling.
View Article and Find Full Text PDFCell Discov
August 2023
Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
The scaffold protein IRS-1 is an essential node in insulin/IGF signaling. It has long been recognized that the stability of IRS-1 is dependent on its endomembrane targeting. However, how IRS-1 targets the intracellular membrane, and what type of intracellular membrane is actually targeted, remains poorly understood.
View Article and Find Full Text PDFJ Cell Biol
March 2022
College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK.
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif.
View Article and Find Full Text PDFFEBS Lett
September 2021
Institute for Protein Research, Osaka University, Suita, Japan.
The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-A ) by solution NMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!