When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moiré bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayers and above can be drastically changed when the magnetic order is switched from the layered antiferromagnetic ground state to a field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by Green's function-Bethe-Salpeter equation (GW-BSE) calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-021-01070-8DOI Listing

Publication Analysis

Top Keywords

interlayer electronic
12
electronic coupling
12
excitonic transitions
8
interlayer
5
magnetic
5
coupling demand
4
demand magnetic
4
magnetic semiconductor
4
semiconductor monolayers
4
monolayers two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!