Undifferentiated mesenchymal tumors arising from the inner lining (intima) of large arteries are classified as intimal sarcomas (ISA) with MDM2 amplification as their molecular hallmark. Interestingly, undifferentiated pleomorphic sarcomas (UPS) of the heart have recently been suggested to represent the cardiac analog of ISA due to morphological overlap and high prevalence of MDM2 amplifications in both neoplasms. However, little is known about ISAs and cardiac UPS without MDM2 amplifications and molecular data supporting their common classification is sparse. Here, we report a series of 35 cases comprising 25 ISAs of the pulmonary artery, one ISA of the renal artery and 9 UPS of the left atrium. Tumors were analyzed utilizing the Illumina Infinium MethylationEPIC BeadChip array, enabling copy number profile generation and unsupervised DNA methylation analysis. DNA methylation patterns were investigated using t-distributed stochastic neighbor embedding (t-SNE) analysis. Histologically, all ISAs and UPS of the left atrium resembled extra-cardiac UPS. All cases exhibited highly complex karyotypes with overlapping patterns between ISA and UPS. 29/35 cases showed mutually exclusive amplifications in the cell-cycle associated oncogenes MDM2 (25/35), MDM4 (2/35), and CDK6 (2/35). We further observed recurrent co-amplifications in PDGFRA (21/35), CDK4 (15/35), TERT (11/35), HDAC9 (9/35), and CCND1 (4/35). Sporadic co-amplifications occurred in MYC, MYCN, and MET (each 1/35). The tumor suppressor CDKN2A/B was frequently deleted (10/35). Interestingly, DNA methylation profiling (t-SNE) revealed an overlap of ISA and cardiac UPS. This "ISA" methylation signature was distinct from potential histologic and molecular mimics. In conclusion, our data reveal MDM4 and CDK6 amplifications in ISAs and UPS of the left atrium, lacking MDM2 amplification. We further report novel co-amplifications of various oncogenes, which may have therapeutic implications. Finally, the genetic and epigenetic concordance of ISAs and UPS of the left atrium further supports a shared pathogenesis and common classification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592836 | PMC |
http://dx.doi.org/10.1038/s41379-021-00874-y | DOI Listing |
NAR Genom Bioinform
March 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pathology, The seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, P.R. China.
Endometrial carcinoma (EC) is the most common malignancies of the female reproductive system in developed countries and areas. Ultrasound-guided and hysteroscopic samplings are commonly used to diagnose EC. However, clinicians question their diagnostic efficacy and the associated patient discomfort.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.
Epigenetic clocks are a common group of tools used to measure biological aging-the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues, but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!