Optimization of TiO-P25 photocatalyst dose and HO concentration for advanced photo-oxidation using smartphone-based colorimetry.

Water Sci Technol

Department of Chemistry, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3, Seminaryjna str., 85-326 Bydgoszcz, Poland.

Published: July 2021

Color images taken by a smartphone camera were used to estimate the rate of advanced photo-oxidation reaction of Direct Red 23 (DR23) azo dye as a model organic pollutant. The red, green, blue color coordinates were tested to quantify the dye. Images of the reaction mixture were taken at specified intervals to obtain kinetic lines and reaction rate constants. Both the reaction rate constant and the final degree of degradation were plotted as functions of the photocatalyst dose and the concentration of HO. The smartphone measurements are fully consistent with the reference spectrophotometry data. The maximum degradation efficiency of the DR23 dye was recorded at C(HO) = 2.5 mM and photocatalyst dose equal to 1.0 mg/L. Higher HO concentrations reduce the degradation rate as a result of the side reaction of HO with OH radicals. A two-factor experimental design was used to study the effects of photocatalyst dose and HO concentration with five and seven levels, respectively. The analysis of variance results indicated that the concentration of HO had the greater influence. The smartphone provides quick and easy measurement of the photodegradation rate directly in the solutions without sampling. The proposed approach can be applied under field conditions in wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2021.236DOI Listing

Publication Analysis

Top Keywords

photocatalyst dose
16
dose concentration
12
advanced photo-oxidation
8
reaction rate
8
rate
5
reaction
5
optimization tio-p25
4
photocatalyst
4
tio-p25 photocatalyst
4
dose
4

Similar Publications

The degradation of methylene blue dye-contaminated wastewater via photocatalysis is an efficient approach towards environmental remediation. The SrZrO perovskite photocatalyst was synthesized using the modified Pechini sol-gel method, and characterized using XRD, FESEM, FTIR, and UV-visible spectrophotometer. Crystallite size obtained by the Scherrer and Williamson-Hall methods were 45.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and testing Cobalt-doped zinc oxide nanoparticles as a photocatalyst for degrading the antibiotic ciprofloxacin (CIPF) under visible LED light.
  • It was found that 10% Cobalt-doped ZnO nanoparticles were the most effective, achieving over 99% degradation of CIPF in just 90 minutes, and maintained their efficiency across three cycles of use.
  • The research also optimized the conditions for maximum degradation efficiency using statistical methods and simulated data using Artificial Neural Networks, achieving a strong correlation for the model’s accuracy.
View Article and Find Full Text PDF

Visual Location of Oxygen Vacancies on Bismuth Titanate Nanosheets with Periodic Quantum Well and Promoting HO Photosynthesis.

Small

January 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, P. R. China.

Oxygen vacancy (OV) defect engineering plays a crucial role in enhancing photocatalytic efficiency. However, the direct visual characterization of oxygen vacancies still remains technically limited. Herein, a bismuth titanate (BiTiO, BTO-OV) model photocatalyst containing oxygen vacancies is constructed through density functional theory (DFT) calculations to reveal the influence mechanism of distinctive periodic quantum well and oxygen vacancies on the charge transfer behavior in BTO.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the degradation of ciprofloxacin (CIP) using a photocatalyst made from CoFeO@3D-TiO and graphene aerogel, achieving complete removal under specific conditions within 60 minutes while showing high reusability.
  • Intermediate products from the degradation process were found to be non-toxic to E. coli, and total organic carbon (TOC) analysis showed 86% mineralization of CIP, indicating successful transformation of non-biological sewage to biodegradable effluent.
  • The research emphasizes the effectiveness of photocatalysis over simple adsorption with a significantly faster reaction rate, showcasing the potential environmental benefits of using the synthesized photocatalyst under visible light.
View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!