Aldo-Keto Reductases and Cancer Drug Resistance.

Pharmacol Rev

Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.).

Published: July 2021

Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto  reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318518PMC
http://dx.doi.org/10.1124/pharmrev.120.000122DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
cancer drug
12
aldo-keto reductases
8
resistance
8
akrs catalyze
8
resistance cancer
8
chemotherapeutic agents
8
cellular stress
8
existing drugs
8
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!