Effects of carbon nanomaterials hybridization of Poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) on thermoelectric performance.

Nanotechnology

Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China.

Published: August 2021

AI Article Synopsis

  • The study investigates how various carbon nanomaterials (like graphene quantum dots and carbon nanotubes) affect the thermoelectric properties of PEDOT: PSS-based hybrids.
  • The research created composite films using different combinations of these carbon materials and found that GNS facilitated the best structural organization within the PEDOT: PSS matrix.
  • The results showed that the best power factor was achieved with GNS at a specific concentration, while the performance of MWCNT in the composites was more variable, initially decreasing conductivity before eventually increasing at higher weights.

Article Abstract

The influence of multiple dimensional carbon nanomaterials, such as graphene quantum dots (GQD), multi-walled carbon nanotubes (MWCNT), and graphene sheets (GNS) of the thermoelectric properties in poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS)-based hybrids have been investigated. PEDOT: PSS matrix was successfully used to prepare PEDOT: PSS/GQDs (PGQD), PEDOT: PSS/MWCNT (PCNT) and PEDOT: PSS/GNS (PGNS) composite films. According to structural characteristics, strong-interactions existed between carbon materials and PEDOT: PSS, and PEDOT: PSS layers with organized and arranged morphology were easier templated by GNS than GQD or MWCNT. It was found that besides energy filtering effect, hole-phonon interaction occurred with further addition of GNS and GQDs in PGNS and PGQD composite films. The optimal power factor (PF) of approximately 580 and 103W mKat 363 K were acquired in PGNS composite films at 5 wt% GNS and PGQD films with 1 wt% GQD filling, respectively. Unlike PGNS and PGQD films, electrical conductivity of PCNT reduced upon the addition of MWCNT, while the Seebeck coefficient decreased firstly, and then increased and reached to the highest value at 10 wt% MWCNT. The optimal PF of 381.8W mKat 363 K was obtained with weight fraction of 0.1 wt% in PCNT films.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac17c3DOI Listing

Publication Analysis

Top Keywords

pedot pss
12
composite films
12
carbon nanomaterials
8
poly34-ethylenedioxythiophene poly
8
poly styrene
8
styrene sulfonate
8
pgns composite
8
pgns pgqd
8
mkat 363
8
films wt%
8

Similar Publications

The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.

View Article and Find Full Text PDF

This work reports on the preparation process of a double-layer perovskite active layer. The first active layer film, CsKPEAPbIBr, was fabricated using a spin-coating method, while the second active layer, MAPbBr, was deposited using MAPbBr single crystals as the evaporation source. Additionally, doping the PEDOT: PSS hole transport layer with ETA and EDA can enhance the uniformity of the perovskite film and reduce voids, improving charge transport efficiency.

View Article and Find Full Text PDF

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

Light Absorption-Enhanced Ultra-Thin Perovskite Solar Cell Based on Cylindrical MAPbI Microstructure.

Materials (Basel)

December 2024

School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China.

In order to promote power conversion efficiency and reduce energy loss, we propose a perovskite solar cell based on cylindrical MAPbI3 microstructure composed of a MAPbI perovskite layer and a hole transport layer (HTL) composed of PEDOT:PSS. According to the charge transport theory, which effectually increases the contact area of the HTL, promoting the electronic transmission capability, the local field enhancement and scattering effects of the surface plasmon polaritons help to couple the incident light to the solar cell, which can increase the absorption of light in the active layer of the solar cell and improve its light absorption efficiency (LAE). based on simulation results, a cylindrical microstructure of the perovskite layer increases the contact area of the hole transport layer, which could improve light absorption, quantum efficiency (QE), short-circuit current density (J), and electric power compared with the perovskite layer of other structures.

View Article and Find Full Text PDF

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!