Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypothesis: A micron-scale oil-in-water emulsion droplet frozen in the presence of surfactants can be induced to eject the crystallizing solid from its liquid precursor. This dynamic process produces highly elongated solids whose shape depends critically on the rate of crystallization and the interfacial properties of the tri-phase system.
Experiment: By systematically varying the surfactant concentration and cooling protocol, including quenching from different temperatures as well as directly controlling the cooling rate, we map out the space of possible particle morphologies as a function of experimental control parameters. These results are analyzed using a non-equilibrium Monte Carlo model where crystallization rate and interfacial energies can be specified explicitly.
Findings: Our model successfully predicts the geometry of the resulting particles as well as emergent phenomena including how the particle shape depends on nucleation site and deformation of the precursor droplet during crystallization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.07.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!