Purpose: To perform the validation of the GPU-based (Graphical Processing Unit based) proton Monte Carlo (MC) dose engine implemented in a commercial TPS (RayStation 10B) and to report final dose calculation times for clinical cases.

Materials And Methods: 440 patients treated at the Proton Therapy Center of Trento, Italy, between 2018 and 2019 were selected for this study. 636 approved plans with 3361 beams computed with the clinically implemented CPU-MC dose engine (version 4.2 and 4.5), were used for the validation of the new algorithm. For each beam, the dose was recalculated using the new GPU-MC dose engine with the initial CPU computation settings and compared to the original CPU-MC dose. Beam dose difference distributions were studied to ensure that the two dose distributions were equal within the expected fluctuations of the MC statistical uncertainty (s) of each computation. Plan dose distributions were compared with respect to the dosimetric indices D, D and D of all ROIs defined as targets. A complete assessment of the computation time as a function of s and dose grid voxel size was done.

Results: The median over all mean beam dose differences between CPU- and GPU-MC was -0.01% and the median of the corresponding standard deviations was close to (√2s) both for simulations with an s of 0.5% and 1.0% per beam. This shows that the two dose distributions can be considered equal. All the DVH indices showed an average difference below 0.04%. About half of the plans were computed with 1.0% statistical uncertainty on a 2 mm dose calculation grid, for which the median computation time was 5.2 s. The median computational speed for all plans in the study was 8.4 million protons/second.

Conclusion: A validation of a clinical MC algorithm running on GPU was performed on a large pool of patients treated with pencil beam scanning proton therapy. We demonstrated that the differences with the previous CPU-based MC were only due to the intrinsic statistical fluctuations of the MC method, which translated to insignificant differences on plan dose level. The significant increase in dose calculation speed is expected to facilitate new clinical workflows.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2021.07.012DOI Listing

Publication Analysis

Top Keywords

dose
16
dose engine
16
beam dose
16
proton therapy
12
dose calculation
12
dose distributions
12
validation gpu-based
8
monte carlo
8
carlo dose
8
pencil beam
8

Similar Publications

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Purpose: Oral corticosteroids (OCS) are recommended for the treatment of exacerbations in people with COPD; however, high cumulative lifetime doses (≥1000mg prednisolone-equivalent) are associated with adverse health effects. This issue is well defined in asthma but is less well understood in COPD. The aim of this study was to examine cumulative OCS dispensed to people with COPD over 12 months.

View Article and Find Full Text PDF

Aim: This study examined citizens' knowledge and compliance with COVID-19 standard operating procedures (SOPs), vaccine acceptance and hesitancy, and factors that could influence these behaviors.

Methods: The study that utilised the Lot Quality Assurance Sampling (LQAS) approach was conducted in eight districts of Central Uganda; Kiboga, Kyankwanzi, Mubende, Kasanda, Mityana, Luwero, Nakaseke, and Nakasongola districts. Each district was divided into five supervision areas (SAs).

View Article and Find Full Text PDF

Visible light has been considered to have minimal impact on the skin. However, the increasing use of electronic devices has led to a significant increase in exposure to visible light, especially blue light. We measured the irradiance (mW/cm) and estimated dose (J/cm) of visible light and blue light emitted from various electronic devices including smartphones, tablets and computers.

View Article and Find Full Text PDF

Lymphomatoid Papulosis Type E With T-Cell Receptor Gamma Positivity.

Clin Cosmet Investig Dermatol

January 2025

Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Lymphomatoid papulosis (LyP) is currently categorized as a primary lymphoproliferative disorder that follows a chronic, recurrent clinical course. The diagnosis of LyP is mainly based on clinical presentation and histopathological correlation. Six subtypes of LyP have been described and recognized, each with different histological features and sometimes distinct clinical presentations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!