Background: Tobacco mosaic virus (TMV) is a disreputable plant pathogen that causes a decline in the quality and yield of various economic crops. Natural products are important potential sources of biopesticides to control TMV. This study focuses on the discovery of anti-TMV active flavonoid glycosides and their mode of action on TMV particles from Clematis lasiandra Maxim.
Results: A new benzoyl acylated flavonoid glycoside, kaempferol 3-O-(2''-benzoyl)-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (1), and nine known flavonoids (2-10) were identified first from C. lasiandra. The hydroxyl group at C-7, E-p-coumarate at C-6'' in the Glc of C-6, and the glucuronic acid at C-3 were functional groups for the antiviral flavonoid glycosides. Flavonoids 2, 5, and 6 showed higher inactivation efficacies of 64.62% to 82.54% compared with ningnanmycin at 500 μg ml . The protective and curative efficacies for 2 and 5 were 57.44-59.00% and 41.17-43.92% at 500 μg ml , respectively. Compound 5 showed higher TMV systemic resistance with control efficacies of 41.64%, 36.56% and 27.62% at concentrations of 500, 250 and 125 μg ml compared with ningnanmycin in K326 tobaccos, respectively. Compound 5 can directly fracture TMV particles into small fragments combining with the fusion phenomena, and TMV-CP was an important target for 5 to break TMV particles.
Conclusion: Flavonoid glycosides from C. lasiandra showed potent antiviral activities against TMV with multiple modes of action including inactivation, protective and curative effects, and inducing systemic resistance. TMV-CP was an important target for active flavonoid glycosides to fracture TMV particles. The results provided evidence that flavonoid glycosides from C. lasiandra have the potential to control TMV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.6569 | DOI Listing |
Front Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Herbal medicine are an invaluable reservoir of bioactive compounds, offering immense potential for novel drug development to address a wide range of diseases. Among these, has gained recognition for its historical medicinal applications and substantial therapeutic potential. This review explores the ethnopharmacological significance, phytochemical composition, and pharmacological properties of , with a particular focus on its anticancer activities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Hesperidin, a natural flavanone glycoside predominantly found in citrus fruits, has gained attention for its wide-ranging biological activities, including potential insecticidal properties. Culex pipiens, commonly known as the northern house mosquito, is a major vector of several human pathogens, such as the West Nile virus and filariasis, making it a key target in the fight against vector-borne diseases. In this study, we evaluated the larvicidal activity of Hesperidin against Culex pipiens larvae, assessing its potential as an alternative to chemical insecticides.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School Hospital, Guizhou Medical University, Guiyang, China.
Thunb. (. ) is a shrub or tree of the genus , family Lamiaceae, which is widely distributed in China, Korea, India, Japan and Philippines.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Ulan-Ude, Russia.
Green waste from Cucurbitaceae agriculture is a common but underutilised resource. In this study, we performed targeted HPLC-PDA-MS profiling to analyse the flavonoid composition of L.f.
View Article and Find Full Text PDFPhytochemistry
January 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China. Electronic address:
Twelve flavonoid glycosides including five undescribed ones, lepisativutimines Q-U, were isolated and identified from Lepidium sativum seeds. Acid hydrolysis followed by acetic derivatization and GC analysis were conducted to determine the absolute configurations for sugars. Lepisativutimine U and beitingxinhuangtong A were uncommon kaempferol 8-S-glycosides, and complete NMR data of beitingxinhuangtong A were provided for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!