Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes.

Angew Chem Int Ed Engl

Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany.

Published: September 2021

Catalyst-free 1,2-carboboration of ynamides is presented. Readily available aryldichloroboranes react with alkyl- or aryl-substituted ynamides in high yields with complete regio- and stereoselectivity to valuable β-boryl-β-alkyl/aryl α-aryl substituted enamides which belong to the class of trisubstituted alkenylboronates. The 1,2-carboboration reaction is experimentally easy to conduct, shows high functional group tolerance and broad substrate scope. Gram-scale reactions and diverse synthetic transformations convincingly demonstrate the synthetic potential of this method. The reaction can also be used to access 1-boraphenalenes, a class of boron-doped polycyclic aromatic hydrocarbons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518048PMC
http://dx.doi.org/10.1002/anie.202107647DOI Listing

Publication Analysis

Top Keywords

12-carboboration ynamides
8
regio- stereoselective
4
stereoselective 12-carboboration
4
ynamides aryldichloroboranes
4
aryldichloroboranes catalyst-free
4
catalyst-free 12-carboboration
4
ynamides presented
4
presented aryldichloroboranes
4
aryldichloroboranes react
4
react alkyl-
4

Similar Publications

Article Synopsis
  • α-Fluoro-α'-aryl ketones are important compounds in the fields of pharmaceuticals and agrochemicals, but their synthesis can be challenging, especially for unsymmetrical versions.
  • This study introduces a one-pot method for synthesizing these compounds using a combination of ynamide, aryl boronic acid, and a fluorine source under palladium (Pd) catalysis.
  • The researchers conducted control experiments and DFT studies to propose a reaction mechanism that includes the formation of acetic acid during the process.
View Article and Find Full Text PDF

Copper-Catalyzed Intermolecular [2 + 2 + 2] Annulation of Diynes with Alkynes: Construction of Carbazoles.

Org Lett

January 2025

Key Laboratory of Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Transition-metal-catalyzed [2 + 2 + 2] annulation of alkynes is an efficient pathway for the synthesis of aromatic compounds. However, most of the established methods require noble metal catalysts. Herein, we report a copper-catalyzed intermolecular [2 + 2 + 2] annulation of diynes with alkynes through vinyl cation intermediates, enabling the atom-economical preparation of biologically important carbazole skeletons.

View Article and Find Full Text PDF

Ynamides, when reacted with H or HBpin in the presence of [Cp*RuCl], convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

Mechanistic Studies on the Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides to Indenes.

ACS Omega

December 2024

Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium.

An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!