A series of 4-halogeno aniline derivatives was studied employing combined theoretical and experimental methods (i. e. crystal structure analysis and vibrational spectroscopies). This simplified model system was selected to shed light on the impact of fluorine substitution on the formation of noncovalent interactions such as halogen bonds (XBs) and hydrogen bonds (HBs), which are key interactions in fluorinated/halogenated drug-protein complex formation. Comparative analysis of three previously reported and five newly determined crystal structures indicated that, in most cases, 2-fluoro and 2,6-difluoro substitution of 4-X anilines increases the ability of adjacent amine to form strong N-H⋅⋅⋅N HBs. Additionally, fluorine substituents in the difluorinated derivatives are competitive and attractive HB and XB acceptors and increase the probability of halogen-halogen contacts. A peculiar observation was made for 4-iodoaniline and 2,6-difluoro-4-iodoaniline, which form distinct interaction patterns compared to the corresponding 4-Cl and 4-Br analogs. The observed intramolecular N-H⋅⋅⋅F interactions lead to additional NH bands in the FT-IR spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202100383 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.
View Article and Find Full Text PDFToxics
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates.
View Article and Find Full Text PDFLangmuir
January 2025
Surface Science Laboratory, Graduate School of Engineering, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya, Aichi 468-8511, Japan.
Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!