Passiflora quadrangularis L. belongs to the family Passifloraceae which bears larger fruit with edible juicy mesocarp and pulp known as a good source of phytochemicals. Cultivation and plant management practices are known to influence the phytochemical compositions of agricultural produce. This study aimed to examine the influence of the cultivation practices on the antioxidant activities and secondary metabolites of the organically and conventionally grown P. quadrangularis. Findings revealed organically treated P. quadrangularis plants showed enhancement in their antioxidant properties and secondary metabolites profiles. Among the plant parts, leaves of P. quadrangularis grown organically possessed higher antioxidant activities compared to the conventional in all assays evaluated. The antioxidant activities in the edible parts of the P. quadrangularis fruit have also been enhanced through organic cultivation with significantly higher total phenolic content and DPPH in mesocarp, and the pulp showed higher total flavonoid content, DPPH and FRAP. This observation is supported by a higher level of vitamins and secondary metabolites in the samples. The secondary metabolites profile showed mesocarps were phenolic rich, the pulps were flavonoids rich while leaves showed good composition of phenolics, flavonoids and terpenoids with outstanding antioxidant activities. The common secondary metabolites for organically produced P. quadrangularis in different plant parts include 2-isopropyl-3-methoxycinnamic acid (mesocarp and pulp), myricetin isomers (pulp and leaves), and malvidin-3-O-arabinoside isomers (pulp and leaves). This study confirmed that organic cultivated P. quadrangularis possessed higher antioxidant activities contributed by its vitamins and secondary metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312946 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255059 | PLOS |
Nat Prod Res
January 2025
Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P. R. China.
A new hydrindane derivative, asperhydrindane A (), along with two known sterol analogues [isocyathisterol () and ganodermasides D ()] were isolated from the mangrove-derived fungus GXIMD 03158 attaching to the mangrove L. The structure of was elucidated based on extensive spectral analysis, HRESIMS, and calculated ECD methods. All compounds were evaluated for antibacterial activity.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania.
This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Oriental Medicine Resources, Sunchon National University, Suncheon 57922, Republic of Korea.
There is a growing need for sustainable, efficient methods to promote plant growth and protect crops, with plant extracts offering natural, multi-component solutions. Based on previous observations, , , and were selected from 17 water extracts to investigate how the application times of soil sprays affect the antioxidant enzymes and secondary metabolites in fruity and leafy vegetables at different growth stages. From 1 week after sowing (WAS) to 4 WAS, all applications increased the shoot fresh weight by 42-69% in cucumbers, 40-64% in tomatoes, 46-65% in kale and 42-63% in lettuce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!