A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Person Foreground Segmentation by Learning Multi-Domain Networks. | LitMetric

Separating the dominant person from the complex background is significant to the human-related research and photo-editing based applications. Existing segmentation algorithms are either too general to separate the person region accurately, or not capable of achieving real-time speed. In this paper, we introduce the multi-domain learning framework into a novel baseline model to construct the Multi-domain TriSeNet Networks for the real-time single person image segmentation. We first divide training data into different subdomains based on the characteristics of single person images, then apply a multi-branch Feature Fusion Module (FFM) to decouple the networks into the domain-independent and the domain-specific layers. To further enhance the accuracy, a self-supervised learning strategy is proposed to dig out domain relations during training. It helps transfer domain-specific knowledge by improving predictive consistency among different FFM branches. Moreover, we create a large-scale single person image segmentation dataset named MSSP20k, which consists of 22,100 pixel-level annotated images in the real world. The MSSP20k dataset is more complex and challenging than existing public ones in terms of scalability and variety. Experiments show that our Multi-domain TriSeNet outperforms state-of-the-art approaches on both public and the newly built datasets with real-time speed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3097169DOI Listing

Publication Analysis

Top Keywords

single person
12
real-time speed
8
multi-domain trisenet
8
person image
8
image segmentation
8
person
6
person foreground
4
segmentation
4
foreground segmentation
4
segmentation learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!