The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users' guide for practitioners interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions. Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2021.3097011 | DOI Listing |
EClinicalMedicine
October 2024
Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada.
Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Cardiology, University Hospital 'St. Ekaterina', Medical University of Sofia, Sofia, Bulgaria.
Background: Formation of local type aortic aneurysm years after surgical repair of coarctation (CoA) occurs in 10% of patients independent of the surgical technique and is a potentially life-threatening condition if left untreated with a high risk of aortic rupture. Redo open surgery is associated with 14% in-hospital mortality and a high risk of complications. Endovascular treatment appears to be a feasible alternative with a high success rate and low morbidity and mortality, but data concerning long-term results is still mandatory.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.
Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.
View Article and Find Full Text PDFJAMIA Open
February 2025
Artificial Intelligence (AI) for Health Institute (AIHealth), Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Rehabilitation Medicine, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.
Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!