Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Imparting porosity to inorganic nanoparticle assemblies to build up self-assembled open porous nanoparticle superstructures represents one of the most challenging issues and will reshape the property and application scope of traditional inorganic nanoparticle solids. Herein, we discovered how to engineer open pores into diverse ordered nanoparticle superstructures via their inclusion-induced assembly within 1D nanotubes, akin to the molecular host-guest complexation. The open porous structure of self-assembled composites is generated from nonclose-packing of nanoparticles in 1D confined space. Tuning the size ratios of the tube-to-nanoparticle enables the structural modulation of these porous nanoparticle superstructures, with symmetries such as , zigzag, , , and . Moreover, when the internal surface of the nanotubes is blocked by molecular additives, the nanoparticles would switch their assembly pathway and self-assemble on the external surface of the nanotubes without the formation of porous nanoparticle assemblies. We also show that the open porous nanoparticle superstructures can be ideal candidate for catalysis with accelerated reaction rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c04784 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!