Purpose: The purpose of this study was to develop a deep learning-based computer-aided diagnosis system for skin disease classification using photographic images of patients. The targets are 59 skin diseases, including localized and diffuse diseases captured by photographic cameras, resulting in highly diverse images in terms of the appearance of the diseases or photographic conditions.
Methods: ResNet-18 is used as a baseline model for classification and is reinforced by metric learning to boost generalization in classification by avoiding the overfitting of the training data and increasing the reliability of CADx for dermatologists. Patient-wise classification is performed by aggregating the inference vectors of all the input patient images.
Results: The experiment using 70,196 images of 13,038 patients demonstrated that classification accuracy was significantly improved by both metric learning and aggregation, resulting in patient accuracies of 0.579 for Top-1, 0.793 for Top-3, and 0.863 for Top-5. The McNemar test showed that the improvements achieved by the proposed method were statistically significant.
Conclusion: This study presents a deep learning-based classification of 59 skin diseases using multiple photographic images of a patient. The experimental results demonstrated that the proposed classification reinforced by metric learning and aggregation of multiple input images was effective in the classification of patients with diverse skin diseases and imaging conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-021-02440-y | DOI Listing |
JMIR Hum Factors
January 2025
New College of Florida, Sarasota, FL, United States.
Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.
View Article and Find Full Text PDFBr J Dermatol
January 2025
Department of Dermatology, Taiyuan Central Hospital, 030001,Taiyuan, China.
PLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Thyroid and Breast Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China.
To assess whether metabolic syndrome can be used as a reference index to evaluate the efficacy of neoadjuvant chemotherapy treatment for breast cancer (BC). Seventy cases of female BC patients who received neoadjuvant chemotherapy treatment and surgical treatment at the Glandular Surgery Department of Hebei Provincial People's Hospital from January 2021 to December 2023 were retrospectively collected, and clinical data such as puncture pathology were recorded. The clinical data were analyzed by 1-way analysis using the χ2 test, and further multifactorial logistic regression analysis was performed for statistically significant differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!