Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome.

Sci China Life Sci

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: May 2022

Plant endophytic bacteria colonize the internal tissues of plants and interact with plants closely. The past two decades have witnessed the increasing application of next-generation 16S rRNA gene sequencing in the investigation of bacterial communities. However, deciphering plant endo-bacterial communities by this method is difficult because of the co-amplification of massive plant organellar DNAs with bacterial 16S. Here, we designed polymerase chain reaction (PCR) primer sets, including 799F/1107R, 322F/796R, and 322F-Dr/796Rs (primer pair 322F/796R with a penultimate-base substitution in 322F), that can specifically amplify bacterial 16S from plant total DNAs. We computationally and experimentally evaluated the specificity, coverage, and accuracy of the newly designed primer sets. Both 799F/1107R and 322F-Dr/796Rs produced plant DNA-free 16S amplicon libraries or reduced plant DNA contamination to lower than 5% for the plant materials with extremely-low-abundance bacterial communities. The primer set 322F-A/796R was used through absolute quantitative PCR to quantitate the population size of rice leaf or root endo-bacteriome, which revealed 10-10 and 10-10 bacteria per gram fresh weight, respectively. These 16S primer sets and amplification methods enable the simple and inexpensive next-generation sequencing and quantification of plant endo-bacteriome, which will significantly advance studies on the plant-related microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-021-1953-5DOI Listing

Publication Analysis

Top Keywords

bacterial 16s
12
primer sets
12
plant
9
plant endo-bacteriome
8
bacterial communities
8
16s
6
bacterial
5
primer
5
designing specific
4
specific bacterial
4

Similar Publications

Antimicrobial regime for gut microbiota depletion in experimental mice models.

Methods Cell Biol

January 2025

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Background: Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!