This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD. The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized. The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study. Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08941939.2021.1953640 | DOI Listing |
Bioelectromagnetics
January 2025
Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
The development of stable and standardized in vitro cytotoxicity testing models is essential for drug discovery and personalized medicine. Microfluidic technologies, recognized for their small size, reduced reagent consumption, and control over experimental variables, have gained considerable attention. However, challenges associated with external pumps, particularly inconsistencies between individual pumping systems, have limited the real-world application of cancer-on-a-chip technology.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia.
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.
View Article and Find Full Text PDFJ Vis Exp
December 2024
The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;
Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.
View Article and Find Full Text PDFbioRxiv
December 2024
Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461.
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!