Conversion/alloy active materials, such as ZnO, are one of the most promising candidates to replace graphite anodes in lithium-ion batteries. Besides a high specific capacity ( = 987 mAh g), ZnO offers a high lithium-ion diffusion and fast reaction kinetics, leading to a high-rate capability, which is required for the intended fast charging of battery electric vehicles. However, lithium-ion storage in ZnO is accompanied by the formation of lithium-rich solid electrolyte interphase (SEI) layers, immense volume expansion, and a large voltage hysteresis. Nonetheless, ZnO is appealing as an anode material for lithium-ion batteries and is investigated intensively. Surprisingly, the conclusions reported on the reaction mechanism are contradictory and the formation and composition of the SEI are addressed in only a few works. In this work, we investigate lithiation, delithiation, and SEI formation with ZnO in ether-based electrolytes for the first time reported in the literature. The combination of and experiments (cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction, coupled gas chromatography and mass spectrometry, differential electrochemical mass spectrometry, and scanning electron microscopy) clarifies the misunderstanding of the reaction mechanism. We evidence that the conversion and alloy reaction take place simultaneously inside the bulk of the electrode. Furthermore, we show that a two-layered SEI is formed on the surface. The SEI is decomposed reversibly upon cycling. In the end, we address the issue of the volume expansion and associated capacity fading by incorporating ZnO into a mesoporous carbon network. This approach reduces the capacity fading and yields cells with a specific capacity of above 500 mAh g after 150 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c06135DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
8
electrolyte interphase
8
lithium-ion batteries
8
specific capacity
8
volume expansion
8
reaction mechanism
8
mass spectrometry
8
capacity fading
8
zno
7
sei
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!