Investigations on external electrostatic field (EEF)-enhanced liquid water evaporation have been reported decades ago, which suggest that molecular alignment and polarization tuned by EEF accelerating the phase change process could be responsible for EEF-enhanced water evaporation. However, a detailed study revealing the role of EEF in altering the intermolecular and intramolecular water structure is lacking. Herein, an EEF is proved to tune water state by accelerating the thermal movement of water molecules, lowering the molecular escaping energy, and loosening the hydrogen bond structure. The detailed mechanisms and field interactions (heat and electrostatic) are investigated by in situ Raman characterizations and molecular dynamic simulations, which reveal that an EEF can effectively reduce the free energy barrier of water evaporation and then increase the evaporated water molecule flux. As a proof of concept, an EEF is integrated into an interfacial two-dimentional solar steam generator, enhancing the efficiency by up to 15.6%. Similar to a catalyst lowing activation energy and enhancing kinetics of a chemical reaction, the EEF enhances water state tuning, lowers evaporation enthalpy, and then boosts steam generation rate with negligible additional energy consumption, which can serve as a generic method for water evaporation enhancement in water harvesting, purification, and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456210 | PMC |
http://dx.doi.org/10.1002/advs.202100875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!