Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small-molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two-tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4'-hydroxychalcone [4'HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self-organize into contractile engineered human myocardium (EHM). We identified 4'HC, 4-fluoro-4'-methoxychalcone, and 4-fluoro-4'-hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4'HC as an effective replacement for BMP4 in the derivation of contractile EHM-forming cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597156PMC
http://dx.doi.org/10.1002/cmdc.202100222DOI Listing

Publication Analysis

Top Keywords

cardiac mesoderm
16
mesoderm induction
16
human pluripotent
8
pluripotent stem
8
stem cells
8
cardiomyocyte derivation
8
chalcone-supported cardiac
4
mesoderm
4
induction
4
induction human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!