Background: In vivo neuroimaging modalities such as magnetic resonance imaging (MRI), functional MRI (fMRI), magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), and quantitative susceptibility mapping (QSM) are useful techniques to understand brain anatomical structure, functional activity, source localization, neurochemical profiles, and tissue susceptibility respectively. Integrating unique and distinct information from these neuroimaging modalities will further help to enhance the understanding of complex neurological diseases.
Objective: To develop a processing scheme for multimodal data integration in a seamless manner on healthy young population, thus establishing a generalized framework for various clinical conditions (e.g., Alzheimer's disease).
Methods: A multimodal data integration scheme has been developed to integrate the outcomes from multiple neuroimaging data (fMRI, MEG, MRS, and QSM) spatially. Furthermore, the entire scheme has been incorporated into a user-friendly toolbox- "PRATEEK".
Results: The proposed methodology and toolbox has been tested for viability among fourteen healthy young participants. The data-integration scheme was tested for bilateral occipital cortices as the regions of interest and can also be extended to other anatomical regions. Overlap percentage from each combination of two modalities (fMRI-MRS, MEG-MRS, fMRI-QSM, and fMRI-MEG) has been computed and also been qualitatively assessed for combinations of the three (MEG-MRS-QSM) and four (fMRI-MEG-MRS-QSM) modalities.
Conclusion: This user-friendly toolbox minimizes the need of an expertise in handling different neuroimaging tools for processing and analyzing multimodal data. The proposed scheme will be beneficial for clinical studies where geometric information plays a crucial role for advance brain research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-210440 | DOI Listing |
Sensors (Basel)
January 2025
Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
This review offers a comprehensive and in-depth analysis of face mask detection and recognition technologies, emphasizing their critical role in both public health and technological advancements. Existing detection methods are systematically categorized into three primary classes: feaRture-extraction-and-classification-based approaches, object-detection-models-based methods and multi-sensor-fusion-based methods. Through a detailed comparison, their respective workflows, strengths, limitations, and applicability across different contexts are examined.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Electrical and Computer Engineering Department, The University of Alabama, Tuscaloosa, AL 35487, USA.
Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Informatics-Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy.
Person re-identification (re-id) is a critical computer vision task aimed at identifying individuals across multiple non-overlapping cameras, with wide-ranging applications in intelligent surveillance systems. Despite recent advances, the domain gap-performance degradation when models encounter unseen datasets-remains a critical challenge. CLIP-based models, leveraging multimodal pre-training, offer potential for mitigating this issue by aligning visual and textual representations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!